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Abstract

We develop a Bayesian method for semiparametric predictive and causal inference
on longitudinal multi-state outcomes. We use a Bayesian causal formulation of the
g computation algorithm (GCA) and incorporate Bayesian additive regression trees
(BART) as the generative components to reduce the need for parametric model spec-
ifications and enable machine learning based prediction of events using time-evolving
models. Our method provides a way to conduct predictive and causal inference based
on posterior predictive distributions of the counterfactual outcomes over time. The
work is motivated by the electronic health records (EHRs) from the Academic Model
Providing Access to Healthcare (AMPATH) in Kenya. We use the data to investigate
dynamic treatment regimes by comparing their causal effects on the progression of
patients’ engagement in care through the HIV care cascade, which is framed as a
time-evolving multi-state outcome with dependent alternatives. Under settings in-
volving dynamical systems that can be described by state transitions over time, the
proposed framework can be applied broadly to understand complex interventions that
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may depend on the progression of outcome and confounders when massive data are
available.

Keywords: Bayesian G computation, BART, competing risks
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1 Introduction

Prevention and treatment of HIV remains a high public health priority. The HIV care

cascade (Perlman et al., 2017; WHO, 2012; Gardner et al., 2011) is a conceptual model

that guides systematic evaluations of public health interventions and supports solution-

seeking in pursuit of HIV care benchmarks (Mugglin et al., 2021; Vourli et al., 2020). The

HIV care cascade outlines essential stages of HIV care as (a) HIV diagnosis through testing,

(b) linkage to and engagement in care, (c) initiation of antiviral therapy, and (d) sustained

suppression of viral load through continued engagement and retention in care. The Joint

United Nations Program on HIV/AIDS (UNAIDS) set the 95-95-95 goal (UNAIDS, 2014)

for HIV treatment in 2014, aiming to achieve three 95% targets in HIV care by 2030:

95% diagnosis rate among people with HIV infection, 95% on sustainable treatment among

diagnosed individuals, and 95% viral suppression among those treated. To meet these

goals, it is critical to understand patient-level dynamics of progression through the cascade

to better manage HIV care programs (Kay et al., 2016).

Patient engagement in HIV care, reflected by regular clinic visits, implies a continuous

and stable relationship with health care providers. It promotes adherence to medications

and HIV viral load suppression, deters development of drug resistance, improves health

outcomes and reduce health care costs, and encourages positive behavioral change that

lowers HIV transmission rate and reduces HIV population burden (Horstmann et al., 2010).

Measures of engagement in care are typically based on patient-level appointment history.

Antiretroviral treatment (ART) initiation strategies in HIV care can impact not only

disease outcomes but behavioral ones, such as engagement and retention in care. The

current World Health Organization guidelines (Organization et al., 2015) call for initiation

of ART for all persons newly diagnosed with HIV regardless of disease status indicators
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such as CD4 count. The Strategic Timing of AntiRetroviral Treatment (START) study

(Insight Start Study Group, 2015), an international randomized trial, showed that imme-

diate initiation of ART upon HIV diagnosis reduces the risk of serious illness and death

after three years of follow-up. In real-world settings, continued adherence with treatment

requires engagement and retention in care. However, studying the impact of treatment

policies on engagement and retention is not feasible in a clinical trial because of the con-

trolled environment. Our analysis is therefore designed to investigate the causal effect of

early ART initiation on engagement and retention in care using observational data from a

large HIV care program in western Kenya. To quantify this effect, our analysis compares

two treatment strategies: one that initiates ART immediately at the first clinic encounter,

and one based on prior recommendations to initiate treatment when CD4 cell count drops

below 350 cells/mm3.

Our analysis uses data from the electronic health records (EHRs) of the Academic Model

Providing Access to Healthcare (AMPATH) program in Kenya (Tierney et al., 2013). The

EHR cohort include adults living with HIV who were not previously in AMPATH HIV

care and whose enrollment date was between June 1st 2008 and August 23rd 2016, and the

date of data closure was August 24th 2016. Our goal is to draw inference about the effect

of treatment regime on care status over time. At any given time, a patient is engaged,

disengaged, transferred out, or died. We therefore formulate the evolution of patient status

as a multi-state process following the framework introduced in Lee et al. (2017). We use

Bayesian g computation algorithm (GCA) (Keil et al., 2017; Robins, 1986; Robins et al.,

1999) to draw inference about the causal impact of treatment strategy on the evolution of

patient outcomes.

The GCA is a method for estimating the effect of complex interventions that may depend
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on the progression of outcome, treatment, and confounders. Like all model-based causal in-

ference methods, it assumes correct specification of the distributions of key processes. GCA

requires the users to specify the time-varying outcome and confounder distributions. To

ensure flexibility in model specification, we use Bayesian additive regression trees (BART)

(Chipman et al., 2010; Keil et al., 2017) . Given a treatment regime of interest, predic-

tions at the individual level and inference for the entire population of interest can then be

obtained from the posterior predictive distribution of the counterfactual trajectories.

GCA for longitudinal data has been used in multiple settings. Petersen and van der

Laan (2011) and Young et al. (2011) used longitudinal observational HIV data to estimate

the causal effect of dynamic treatment regimes on HIV/AIDS-related mortality, using linear

model specifications for distributions of time-dependent variables conditional on covariates

related to clinical histories. Zhou et al. (2019) combined the parametric GCA with mul-

tiple imputation of missing data using penalized splines. Keil et al. (2017) introduced

the Bayesian approach to GCA for static interventions. Antonelli and Daniels (2019) ap-

plied Bayesian nonparametric models using the Dirichlet process for implementing Bayesian

GCA. Bayesian semi-parametric GCA using BART is used by Josefsson and Daniels (2019)

to infer the causal effect of deterministic longitudinal intervention assignment on a time-

varying continuous outcome subject to missingness due to dropout.

In our application, we use multinomial probit BART and model retention in HIV care

as a time-evolving multi-state variable. The states are not required to be independent, i.e.

the ratio of likelihood between engagement versus disengagement may be affected by the

chance of death. In the AMPATH data, the states are extremely imbalanced such that rate

of death and transfer-out are extremely low compared to engagement and disengagement.

Hence, allowing dependence between states enables us to borrow strength in handling sparse
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categories from the more frequent ones. Moreover, Lemnaru and Potolea (2011) observed

that pruning deteriorates the performance of the decision trees as imbalance increases

in binary outcomes; this further encourages our usage of BART because it reduces the

size of individual trees by a strongly influential prior distribution instead of pruning as

in frequentist tree methods. The sampling strategy in Xu et al. (2021) implements a

multinomial probit version of BART and is designed to address these complications.

We lay out the rest of this paper as follows. Section 2 describes the structure of data

from AMPATH EHR. In Section 3, we introduce the causal model of interest and asso-

ciated notation, describe our proposed Bayesian approach including the assumptions and

formulation of Bayesian GCA, provide details of model specifications, and outline posterior

inference as a three-step procedure. In Section 4, we present an analysis of the AMPATH

data. Section 5 provides a discussion of the proposed Bayesian approach.

2 Notations and Data Structure for the Observed Data

Following Lee et al. (2017), we adopt a state transition framework that defines patient

state at regular time intervals each of length 200 days, indexed by k = 1, . . . , K with k = 0

being the study baseline. We set K = 10 based on duration of follow up in cohort. The

study baseline is defined as a 12-day interval following enrollment on day 0, during which

the initial measurement of CD4 typically happens as part of the enrollment process; unlike

other post-baseline intervals, the first interval is (12,200] instead of (0, 200]. Time-invariant

covariates at baseline are denoted as V . We define three stochastic processes, {Sk : k ≥ 0},

{Xk : k ≥ 0}, and {Ak : k ≥ 0}, representing outcome state, time-varying confounders,

and treatment status over time, respectively.

Patient status Sk is a multinomial random variable coded as 0 for disengagement, 1 for
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engagement in care, 2 for transfer-out, and 3 for reported death. Patients are classified

as engaged if they had at least one care encounter in interval k, and disengaged otherwise

if there is no indication of reported death or transfer. We set S0 ≡ 1 for all patients at

the initial care encounter. If a patient has a care encounter in interval k that indicates a

transfer-out, the person is considered to be engaged at interval k and transferred out at

k + 1, i.e. Sk = 1 and Sk+1 = 2. Reported death and transfer-out are absorbing states, i.e.

Sk′ = Sk for k′ > k if Sk ∈ {2, 3}. Figure 1 presents possible transitions of Sk to Sk+1 for

k ≥ 0. Figure 2 summarizes the distribution of observed outcomes in the data and shows

that the total number of observations decreases over time due to staggered entry over time.

Table 1 summarizes the observed aggregated transition probabilities over time.

For time interval k, the variable Ak is an indicator of being initiated on antiretroviral

treatment in HIV care during the interval. Following Young et al. (2011), a jth time-

varying confounder is modeled as (Lkj, Rkj) in interval k, where Rkj is the binary indicator

of whether at least one update of the confounder occurred in the interval and Lkj is the

carried-forward measurement. Suppose there are p time-varying confounders, then they are

modeled as a vector-valued stochastic processXk = (Rk, Lk), where Lk = (Lk1, . . . , Lkp) and

Rk = (Rk1, . . . , Rkp). For example, CD4 is a time-varying confounder and its most recent

measurement stays unchanged (Lkj = Lk−1,j) when it is not updated in the current interval

(Rkj = 0). We let X−1 and X0 represent measurements during the pre-baseline period

of days (-200, 0] and study baseline (0,12]. Let the overbar notation denote longitudinal

paths, e.g. Āk = {Al : l = 0, . . . , k} is the longitudinal path of interventions up to time

interval k ∈ {0, . . . , K}.
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3 Bayesian G-Computation for Multistate Model

3.1 Causal Quantities

The goal is to set up a causal framework to compare treatment regimes. As in Young

et al. (2011), we define a treatment regime to be a function q(·) that dynamically maps

data history to a current intervention status. The intervention sequence āqk = (aq1, . . . , a
q
k)

is sequentially determined by regime q, i.e. aqk = q(Fk) for k = 0, . . . , K, where Fk =

{v, x̄0, s0, al−1, xl−1, sl : l = 1, . . . , k} = {v, āk−1, x̄k−1, s̄k} for k = 1, . . . , K represents

an accumulated history up to interval k. Here we use F0 to denote (v, x̄0, s0) at t = 0

for uniformity of notation. We use the superscript q to denote potential outcomes under

any regime q, e.g., S̄qk and X̄q
k represent the longitudinal paths of potential outcomes and

confounders under a treatment regime q.

For the analysis here, we are interested in comparing the causal effectiveness of dynamic

treatment regimes expressed in the form of aqk = q(ak−1, Xk−1, Sk). For example, one of the

regimes being compared in Section 4 is to initiate treatment when CD4 cell count drops

below 350 cells/mm3, i.e. treatment status is a function of the time-varying confounder,

CD4 cell count. The causal comparison of two different regimes q1 and q2 across time can

be represented in terms of P (Sq1k ) and P (Sq2k ), the marginal distribution of the potential

outcome under q1 and q2 at each interval k = 1, . . . , K.

3.2 The G-Formula and Assumptions

In this section we describe calculation of target quantity P (Sqk), the marginal distribution

of potential outcome at time interval k had all subjects followed regime q for k = 1, . . . , K.

We state the assumptions for identifying P (Sqk) and show how its posterior predictive
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distribution is obtained using the G-formula.

Let S denote the set of non-absorbing state(s) of the outcome, e.g. S = {0, 1} under

the data structure described in Section 2. The set of absorbing state(s) is then Sc = {2, 3}.

Similar to Robins et al. (1999) and Young et al. (2011), we make the following identifying

assumptions:

1. Consistency: if Āk = āqk, then S̄k+1 = S̄qk+1 and X̄k+1 = X̄q
k+1

2. Positivity : P (Ak = aqk|X̄k−1, S̄k, Āk−1 = āqk−1) > 0 w.p.1 for Sk ∈ S, k = 0, . . . , K.

3. Sequential exchangeability:

(Sqk+1, . . . , S
q
K) ⊥ Ak | (X̄k, S̄k, Āk−1 = āqk−1),

for Sk ∈ S, k = 0, . . . , K − 1.

Consistency states that counterfactuals follow observed variables’ distribution when the

regime of interest is observed. The positivity assumption is that no regime is systematically

ruled out in practice. Under sequential exchangeability, the study resembles a sequentially

randomized trial in which initiation of treatment at each time point is randomized with a

probability that depends on the accumulated longitudinal history. We further assume that

the generative component models for [Xk|X̄k−1, S̄k−1, Āk−1, V ] and [Sk|X̄k, S̄k−1, Āk−1, V ]

can be specified via flexible parametric models indexed by finite-dimensional parameters,

such as BART. For now we denote these models as

P (Xk|X̄k−1, S̄k−1, Āk−1, V, γk) and (1)

P (Sk|X̄k, S̄k−1, Āk−1, V, θk), (2)

for k = 1, . . . , K. Let θ̄k = (θ1, . . . , θk) and γ̄k = (γ1, . . . , γk) denote the parameters for

models up to time interval k, and assume that (θ̄k, γ̄k) are a priori independent.
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The marginal outcome distribution P (Sqk = sk|θ̄k, γ̄k) can be calculated using the G-

formula as follows (see Appendix A.1):

P (Sqk|θ̄k, γ̄k) =

∫
· · ·

∫
(V,X0,S0,...,Xk−1,Sk−1,Xk)

{
k∏
j=1

P (Sj|X̄j, S̄j−1, ā
q
j−1, V, θj)

× P (Xj|X̄j−1, S̄j−1, ā
q
j−1, V, γj)

}
× P (V,X0, S0)dXkdSk−1dXk−1 . . . dS0dX0dV.

(3)

Given a posterior distribution of (θ̄k, γ̄k), we can simulate outcomes from the posterior pre-

dictive distribution of Sqk as follows. Write the observed data asD = {Vi, ĀiKi
, X̄iKi

, S̄iKi
; i =

1, . . . , N}, where Ki is the length of follow-up for the ith subject. Define Dk as all available

observations up to interval k, and Dk is the subset of Dk where every subject had at least

k intervals of follow-up, i.e. Dk = {Dk | Ki ≥ k}. The posterior predictive distribution of

Sqk given the observed data D follows by integrating over the posterior of parameters:

P (Sqk|Dk) =

∫
(θ̄k,γ̄k)

P (Sqk|θ̄k, γ̄k)P (θ̄k, γ̄k|Dk)d(θ̄k, γ̄k), (4)

where P (Sqk|θ̄k, γ̄k) is calculated using the G-formula given in (3) and P (θ̄k, γ̄k|Dk) is the

posterior density of the model parameters. Under the assumption of a priori independence

between θ̄ and γ̄, the posteriors are independent:

P (θ̄k, γ̄k|Dk) =
k∏
j=1

P (θj|Dj)P (γj|Dj).

Please see Appendix A.2 for the detailed derivation.

To draw from P (Sqk|Dk), we first draw a sequence (θ̄∗k, γ̄
∗
k) from the posterior P (θ̄k, γ̄k|Dk).

Using (4), we obtain P (Sqk|θ̄∗k, γ̄∗k) as a posterior sample of P (Sqk|Dk). In this way, we can ob-

tain the posterior predictive distribution for the target quantity P (Sqk|Dk) at k = 1, . . . , K,

and use it to compare the causal effectiveness of different regimes defined by q.
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3.3 Specifying Component Models using BART

Model construction involves specifying generative component models and priors for Rk,

Lk, and Sk, which are binary, continuous, and multinomial variables, respectively. For a

predictive model at interval k, denote the corresponding model covariates for subject i as

Hik, the components of which may differ between models for Rk, Lk, and Sk based on the

specifications for (1) and (2). Note that the model for Lk is conditional on Rk = 1. Please

see Appendix A.3 for details of the prior specifications in the component models.

For binary time-varying confounders Rik, which indicate whether the covariate Lik has

been measured, we assume a probit model

P (Rik = 1|Hik, γ
R
k ) = Φ[G(Hik;T

R
k ,M

R
k )], (5)

where Φ(·) is the standard normal cumulative density function and γRk is the vector of

model parameters. The regression function G(·;TRk ,MR
k ) is parameterized as a sum of

binary trees,

G(Hik;T
R
k ,M

R
k ) =

nT∑
j=1

g(Hik;T
R
kj,M

R
kj),

where nT is a user-specified total number of trees, TRk = (TRk1, . . . , T
R
k,nT

), MR
k = (MR

k1, . . . ,M
R
k,nT

),

TRkj is the jth tree consisting of interior nodes as decision rules and BR
kj terminal nodes

with parameters MR
j = (mR

1,j, . . . ,m
R
BR

kj ,j
). The jth component of G, g(Hik;T

R
kj,M

R
kj), con-

tributes mR
b,j to the sum of trees if Hik belongs to the bth terminal node of the tree structure

TRkj by falling through its decision rules from root to bottom.

For the continuous time-varying confounder Lik, the component model is parameterized

as

[Lik|Hik, γ
L
k , Rik = 1] ∼ N [G(Hik;T

L
k ,M

L
k ), σ2], (6)
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where N(·, ·) is the normal density function, γLk = (TLk ,M
L
k , σ), and G(Hik;T

L
k ,M

L
k ) is

defined as the sum of trees.

The multistate outcome Sik, is a multinomial variable taking value in {0, . . . , C}; we

model Sik as a function of covariates Hik. Because the categories of Sik might not be

independent, we use a MNP having correlated latent utilities (van Dyk, 2010). Without

loss of generality, we assume the reference category is Sik = 0. The outcome is related to

a latent vector variable Wik via

Sik(Hik) =


l if max(Wik) = Wikl > 0

0 if max(Wik) < 0,

(7)

where Wik = (Wik1, . . . ,WikC) is a vector of latent utilities that follows multivariate Gaus-

sian distribution

Wik|Hik, γ
S
k ∼MVN(G(Hik;T

S
k ,M

S
k ),Σk),

and G(Hik;T
S
k ,M

S
k ) = (G1(Hik;T

S
k1,M

S
k1), . . . , GC(Hik;T

S
kC ,M

S
kC)). Each mean component

is parameterized as sum of trees:

Gl(Hik;T
S
kl,M

S
kl) =

nT∑
j=1

g(Hik;T
S
klj,M

S
klj),

where l = 1, . . . , C. The corresponding prior distributions for the trees follows similar

standard priors as for continuous response in BART. The covariance matrix Σ of the latent

variables is a C × C positive definite matrix under the constraint that trace(Σ) = C

(Burgette and Nordheim, 2012). Please refer to Xu et al. (2021) for more details to our

implementation of multinomial probit Bayesian additive regression trees (MPBART).

3.4 Posterior Inference

Posterior inference about causal effects can be carried out in three steps: (a) gener-

ate posterior draws of the parameters in generative component models (1) and (2), i.e.
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(θ̄∗K , γ̄
∗
K) ∼ P (θ̄K , γ̄K |D), (b) validate the component models, and (c) under a given regime q

of interest, generate the posterior predictive distribution of potential outcomes (Sq1 , . . . , S
q
K)

using (3). The difference between posterior predictive outcome distributions under two dif-

ferent regimes then indicates the causal effect of implementing one regime versus another.

Details for calculation are as follows.

Step I: Bayesian posterior inference for the predictive models. Based on the

specifications (5), (6), and (7), we fit the generative models (1) and (2) at each time interval.

There are several considerations in actual implementation. First, irregularly measured

time-varying confounders Lik (such as CD4 count) are not recorded at every interval k;

the modeling of Lik is conditional on Rik = 1, i.e. a confounder is being updated. Second,

model specifications need to be aligned with assumptions backed by the scientific problem

of interest; for example, state outcome Sk may involve multiple models when the support

of Sk varries conditional on the value of Sk−1. We generate Npost posterior draws for each

specified generative component model, producing Npost posterior samples of the parameter

sequence (γ̄K , θ̄K) = (γ1, θ1, . . . , γK , θK). The posterior model parameters generated on the

training data are then applied to the validation data for model evaluation.

Step II: Model validation. Assume N ′ is the sample size of the validation data.

Stratified by outcome level l, we evaluate each categorical component model by comparing

the observed rate 1
N ′

∑N ′

i=1 1{Sik = l} to the mean and 95% credible intervals of the posterior

agreement accuracy, defined as { 1
N ′

∑N ′

i=1 1{Ŝijk = l}; j = 1, . . . , Npost} (Xu et al., 2021),

where Ŝijk is the jth posterior prediction for the outcome of the ith subject at the kth time

interval. For binary outcomes, we set l = 1. For continuous outcomes, we compare the

observed mean 1
N ′

∑N ′

i=1 Sik to its posterior samples { 1
N ′

∑N ′

i=1 Ŝijk; j = 1, . . . , Npost}.

Step III: Generate posterior predictive counterfactual marginal outcome dis-
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tribution under a dynamic treatment regime. Two treatment regimes, q1 and q2,

can be compared by estimating the populating average treatment effect at each interval

k, P (Sq1k ) − P (Sq2k ). For any regime q and a target population of interest, the calculation

of the counterfactual marginal outcome distribution P (Sqk) starts from the baseline distri-

bution F (X0, V ). Given a sampled data from the target population as in our application,

we initiate the inference from a bootstrapped empirical distribution of (X0, V ) for each

posterior iteration; this Bayesian bootstrap procedure accounts for sampling variability in

the target population baseline distribution F (X0, V ). For a specific realization of baseline

variables and generative model parameters, (v∗, x̄∗0, s
∗
0; γ∗k, θ

∗
k), the procedure fixes the treat-

ment sequence under q and makes posterior predictive draws of longitudinal counterfactual

variables (x∗k(q), s
∗
k(q)) as follows

a∗k−1(q) = q(F∗k−1)

x∗k(q) ∼ P (Xk|X̄k−1 = x̄∗k−1(q), S̄k−1 = s̄∗k−1(q), Āk−1 = ā∗k−1(q), V = v∗, γ∗k) (8)

s∗k(q) ∼ P (Sk|X̄k = x̄∗k(q), S̄k−1 = s̄∗k−1(q), Āk−1 = ā∗k−1(q), V = v∗, θ∗k), (9)

where F∗k−1(q) = {ā∗k−2(q), x̄∗k−2(q), s̄∗k−1(q), v∗} for k = 1, . . . , K, with the definition that

ā∗−1 = 0.

For the jth bootstrap subsample, we draw a counterfactual posterior longitudinal path

for the ith individual, {a∗ij,k−1(q), x∗ijk(q), s
∗
ijk(q); k = 0, . . . , K}, where j = 1, . . . , Npost and

k indexes time intervals. Write Ñ as the sample size of the bootstrap subsample. The

target quantity is then estimated by averaging over the counterfactual outcomes at interval

k as follows,

p
(q)
ljk =

1

Ñ

Ñ∑
i=1

1{s∗ijk(q) = l}, (10)

and {p(q)
ljk; j = 1, . . . , Npost} is a sample from the posterior predictive distribution of the
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target quantity P (Sqk = l|Dk). As a result, we can summarize the causal effectiveness of

different dynamic treatment regimes at each interval k and outcome level l by the posterior

mean

p
(q)
lk =

1

Npost

Npost∑
j=1

p
(q)
ljk, (11)

and its 95% posterior credible intervals.

4 Analysis of AMPATH Data

We apply the Bayesian approach in Section 3 to the AMPATH data described in Section 2.

The goal of the application is to compare the causal effectiveness of different antiretroviral

treatment initiation regimes on the longitudinal progression of the multistate engagement

outcome over time. To accomplish this, we compare the posterior predictive distribution

of the marginal probability of engagement status at each time interval under different

treatment regimes. We compare three regimes: treat immediately, never treat, and treat

when CD4 drops below 350 cells/mm3. The regime “treat when CD4 drops below 350

cells/mm3” assumes that: (a) treatment initiation at the baseline is based on CD4 measured

during days (-200,0], (b) post-baseline initiation requires engagement in care and a previous

or current measured CD4 less than 350 cells/mm3 during that specific time interval, and

(c) once a patient is treated, the person is always on treatment. In addition to existing

literature (Young et al., 2011; Hontelez et al., 2011; The INSIGHT START Study Group,

2015) advocating benefits of early treatment initiation on individual patient outcomes, early

treatment initiation can also improve patients’ retention in care by generating an incentive

to engage with the care system (e.g., filling prescription).

For model training and validation, we randomly separate individual records into two

parts: N = 50, 000 individuals are used to fit component models and N ′ = 26, 740 indi-
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viduals are used for model validation. We bootstrap a subsample of Ñ = 10, 000 from a

total of 76, 740 individuals for each posterior iteration and generate posterior predictive

comparisons across the three regimes of interest using the bootstrapped empirical baseline

distributions. We assume a first-order Markov structure for the generative components

(1) and (2) such that the time-varying confounders Xk and outcomes Sk only depend on

(Xk−1, Sk−1, Ak−1, V ) and (Xk, Sk−1, Ak−1, V ), respectively.

4.1 Model Estimation and Validation

We include the following as time-invariant baseline variables V : gender, marriage status

(married or otherwise), calendar year of enrollment (2008, 2009,. . ., 2016), baseline age

in years, travel time to clinics (< 30min, 30min to 1h, 1h to 2h, > 2h), baseline WHO

stage (primary infection, clinically asymptomatic stage, symptomatic HIV infection, and

AIDS), height in cm, baseline weight in kg, and baseline viral load in log copies per mL.

Because viral load has a lower detection limit of 50 copies per mL, we also include an

indicator of undetectable baseline viral load. We do not model viral load as a time-varying

confounder due to its infrequent measurement. Table 2 summarizes (V, X̄0, A0) at the

baseline. Missingness in baseline covariates is handled by including missing indicators as

the model covariates. For example, we code a variable V as (U, (1− U)V ), where U = 1 if

the covariate is missing. Time-varying CD4 is modeled as (Rk, Lk) where Rk is an indicator

of having a new CD4 measurement, and Lk = log(CD4+1) for the most recently measured

CD4 count. The assumption of no unmeasured confounders in this application states that

given patients’ baseline information and their longitudinal history of CD4 progression,

their future counterfactual state outcomes are independent of the current treatment status.

Model fitting for the multistate outcome Sk is done using two separate conditional models,
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one for Sk−1 = ‘engaged’ and the other for Sk−1 = ‘disengaged’, because by definition the

probability of transition from ‘disengaged’ to ‘transfer out’ is zero.

Using the training data of 50,000 individuals, we fit the generative component models

(1) and (2) under BART specifications (5), (6), and (7). For each model, we set the

number of trees m as 100, an MCMC burn in of 10,000, and the number of posterior

draws as 5000; then we thin the MCMC procedure by one draw per five samples, obtaining

1000 posterior samples for the GCA simulation. For implementation, we developed the R

package GcompBART . Using the package, the model estimation step can be accomplished

within 3.5 hours when 1 CPU is used for each paralleled computation of a chain under

RedHat Linux system. We set the reference level in MPBART to the outcome level with

the largest observed frequency for each multistate outcome model.

Next, we use diagnostic plots to assess convergence of the MCMC chains and validate

model accuracy by comparing observed outcome distributions to the posterior predictive

distributions of the validation data. We track the MCMC convergence of a BART model

using the average depth among all posterior trees, which should be stable across MCMC it-

erations under convergence (Kapelner and Bleich, 2013). For the convergence of MPBART,

we check the average tree depth for every latent utility Wikl in (7). Average tree depths

for all the three latent utilities are stable within a small range of fluctuation around 2.1,

showing adequate stability and sufficient regularization from the tree priors that encourage

shallow trees.

Figure 3 shows model validation results for time-varying confounders and outcomes.

Average values of observed responses are represented by blue dots. The grey area represents

95% posterior credible intervals. To supplement the visual check, Table 3 summarizes
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posterior outcome agreement,

1

N ′Npost

N ′∑
i=1

Npost∑
j=1

1{Ŝijk = Sik},

and the posterior mode accuracy 1
N ′

∑N ′

i=1 1{S̃ik = Sik}, where

S̃ik = argmaxl∈{0,1,2,3}

Npost∑
j=1

1{Ŝijk = l}

of the outcome predictions on the validation data across time intervals. From the out-

of-sample accuracies in Table 3, we conclude that all estimated predictive models have

reasonably well out-of-sample posterior predictive accuracy across time.

4.2 Posterior Predictive Inference about Causal Effects

Using the validated models, we simulate regime-specific potential longitudinal paths of

time-varying states and confounders, under the three treatment initiation policies: treat

immediately, treat when CD4 drops below 350 cells/mm3, and never treat. As described in

Section 3.1, for a regime q, (x∗k, s
∗
k) are counterfactuals at interval k under an intervention

path ā∗k−1 = (a∗0, . . . , a
∗
k−1) sequentially determined by a∗j = q(F∗j ), j = 0, . . . , k − 1, where

F∗j is the counterfactual accumulated history before any intervention decision at time inter-

val j. The three regimes of interest then correspond to a∗j ≡ 1 (treat immediately), a∗j ≡ 0

(never treat), and

a∗j = q(a∗j−1, x
∗
j−1, s

∗
j) =


1{r∗−1 = 1, l∗−1 ≤ log(351)} j = 0

1{l∗j−1 ≤ log(351), s∗j = 1} j > 1, a∗j−1 = 0

1 j > 1, a∗j−1 = 1,

(treat when CD4 falls below 350), where (r∗j , l
∗
j ) are simulated values of (Rq

j , L
q
j).

We base the posterior predictive inference on the bootstrapped empirical distribution of

the baseline variables (V,X−1, X0, S0). In the sequential sampling scheme, letting i, j, and
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k index person, posterior draw, and time interval, (a) if a s∗ijk is drawn to be transfer-out or

reported death, outcomes in the corresponding longitudinal path after interval k stays in

the absorbed state; (b) for a path indicating that a patient is still active in care at interval

k, the most recent CD4 stays unchanged unless the posterior simulation indicates there is a

measurement update; and (c) simulation of s∗ijk is done conditioning on the simulated value

of s∗ij,k−1. Figure 4 summarizes the progression of counterfactual engagement outcomes over

time by showing the posterior mean of marginal outcome distributions p
(l)
k as defined in

equation (11), for k = 1, . . . , 10 and l = 0, 1, 2, 3. From Figure 4 we can see that the

immediate initiation of treatment yields superior patient engagement over time compared

to the other two policies.

Figure 5 illustrates the progression of counterfactual engagement status through the care

cascade in terms of time-specific between-state transition probabilities. Once disengaged,

probability of continued disengagement tends to be high, regardless of treatment regime.

However, among those currently engaged, treatment regime can greatly affect retention for

the next time interval; early treatment initiation improves engagement at approximately

one year in HIV care and reduces disengagement throughout the simulation time window.

Note that in the observed data, the highest risk for disengagement is within one year of

enrollment, as shown in Figure 6.

4.3 Causal Comparison of Treatment Initiation Policies

For the comparison of any two regimes q1 and q2, at each time interval k ∈ {1, . . . , K}

and outcome level l ∈ {0, 1, 2, 3}, we obtain from Bayesian GCA the posterior predictive

samples of P (Sq1k = l|Dk) and P (Sq2k = l|Dk), denoted by {p(1)
ljk; j = 1, . . . , Npost} and

{p(2)
ljk; j = 1, . . . , Npost}, respectively.
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Causal comparativeness effectiveness between the two policies is quantified as the dif-

ference P (Sq1k = l|Dk) − P (Sq2k = l|Dk), whose posterior predictive distribution can then

be sampled as {dljk; j = 1, . . . , Npost}, where dljk = p
(q1)
ljk − p

(q2)
ljk . Figure 7 shows the causal

comparative effectiveness of two treatment initiation policies: treat immediately and treat

when CD4 drops below 350 cells/mm3; it displays the posterior mean and 95% posterior

confidence interval of {dljk; j = 1, . . . , Npost} over k = 1, . . . , K, stratified by outcome levels

l = 0, 1, 2, 3.

In Figures 4 and 7, we observe that starting from the second interval, treat imme-

diately significantly enhances engagement in care and reduces disengagement in the long

run, which potentially decreases the under-reporting death or transfer-out due to loss to

follow-up. Figure 7 also shows that the posterior predictive uncertainty increases over time

because there is less data further away from enrollment. Specifically, Figure 5 illustrates

that compared to the never treat and treat based on CD4, the treat immediately regime

is the best at retaining engaged patients and re-engaging disengaged patients over time.

In Table 4, the observed data in the first time interval has a lower engagement rate for

people with treatment initiated at baseline; this is also reflected in the treatment compar-

ison results from Figures 4 and 7. A possible explanation is that, patients who did not

have treatment initiated during the baseline visits may be more concerned about starting

therapy, thus having a higher tendency to re-visit during the first 200 days. The trend of

a mild increasing transfer-outs in Figure 7 may have resulted from the higher engagement

rate under immediate treatment, because patients have to be engaged in care in order to

file a transfer-out to the care program, otherwise classified as disengagement.
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5 Discussion

The main contribution of this work is to develop a Bayesian framework for the causal

inference of multistate outcomes under dynamic treatment regimes, by using BART in

the Bayesian GCA for the time-evolving generative components. Compared to parametric

GCA, our proposed method uses additive regression trees as generative components, reduc-

ing concerns for model mis-specifications and allowing for flexible model specification. The

proposed framework combines multiple machine-learning-based component models across

time and enables causal comparisons from simulated potential longitudinal trajectories.

There are two important assumptions: no unmeasured confounding and the first order

Markov assumption. The former is untestable (Robins et al., 1999); the latter is testable

in principle but is difficult to assess in practice. In addition, we programmed an R package

“GcompBART” to support the implementation of the proposed method.

Our work demonstrates a connection between mathematical modeling and statistical

modeling in causal inference. Mathematical modeling (Granich et al., 2009; Hontelez et al.,

2011), such as microsimulation models and agent-based models, simulates individual out-

comes for population-level inference. It derives a series of distributional assumptions from

literature across multiple populations before calibrating model parameters to match the

target population. The model parameters usually have causal interpretations that repre-

sent processes such as demography, natural history, intervention provision, and outcome

progression. The advantage of mathematical modeling is its flexibility to describe a highly

complex dynamic system; however, the strong assumptions carry the risk of losing coher-

ence and liability for representing the specific population of interest, which may eventually

induce biases in risk and causal estimations (Murray et al., 2017). Whereas in our method,

inferences from statistical models make a relatively minimal set of assumptions and are more
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data-dependent; the data used to fit the generative component models and the samples for

which we generate counterfactual distributions should represent the target population.

The proposed approach has successfully identified substantial long-term positive effect

of immediate ART at the initial clinic visits, such as enhancing patients’ retention in HIV

care. It is thought that better retention in HIV care will result in a decrease in HIV

transmission (Skarbinski et al., 2015), higher rates of sustained suppression of viral load,

and lower risk of drug resistance and mortality(Tripathi et al., 2011). It is worth noting

that death and transfer-out are reported outcome states in this implementation, which

means that disengaged individuals may have died or transferred out without informing

the HIV care system (Bakoyannis and Yiannoutsos, 2015). Hence, reduced disengagement

might lead to fewer unreported cases of death and transfer-out. Our proposal also provides

a framework for future research on addressing such incomplete outcome ascertainment

from under-reported or unobserved states. We can partially recover information about

under-reported states by importing prior knowledge on the mechanisms underlying those

categories, for example, using data from double-sampling designs on unobserved deaths

(Bakoyannis et al., 2020).
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Tables

Table 1: Observed state transition rates and marginal state probabilities over the follow-up

period of 76,740 people (678,815 observations).

Sk

Sk−1 Disengaged Engaged Transferred Out Died n

Disengaged 0.936 0.061 0 0.002 214301

Engaged 0.129 0.851 0.007 0.013 387774

Transferred Out 0 0 1 0 2804

Died 0 0 0 1 5450

Table 2: Summary table of baseline variables V , time-varying confounders (X−1,X0), and

treatment indicator A0 during the care initiation period. V are gender, age, marriage

status, year of enrollment, travel time to clinic, WHO stage, weight, height, and viral load.

X−1 is the latest CD4 before and up to the baseline, i.e. during days (-200, 0]. X0 is the

latest CD4 measurement during the HIV care initiation period of days (0,12].

n percent 25% 50% 75%

Gender Female 50941 66.4

Male 25799 33.6

Age 76740 100 28.5 35.2 43.2

Married 0 29668 38.7

1 40403 52.6

Missing 6669 8.7

23



n percent 25% 50% 75%

Year of Enrollment 2008 7189 9.4

2009 13616 17.7

2010 12747 16.6

2011 11762 15.3

2012 9302 12.1

2013 7512 9.8

2014 7547 9.8

2015 6488 8.5

2016 577 0.8

Travel Time > 2 h 5764 7.5

1-2 h 10835 14.1

30-60 min 20202 26.3

< 30 min 17975 23.4

Missing 21964 28.6

WHO stage 1 4111 5.4

2 1502 2.0

3 1751 2.3

4 287 0.4

Missing 69089 90.0

Weight 73412 95.7 50.0 56.0 63.0

Height 63690 83.0 159.0 165.0 171.0

Viral Load 639 0.8 0 519 33129

CD4 in (-200,0] 48923 63.8 107.0 253.0 442.0

CD4 in (0,12] 6424 8.4 97.0 249.0 441.8

on ARV in [0,12] 0 64247 83.7

1 12493 16.3
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Table 3: Posterior mean accuracy of outcome models across time intervals.

k 1 2 3 4 5 6 7 8 9 10

Posterior Mean Accuracy 0.81 0.71 0.79 0.83 0.84 0.85 0.86 0.86 0.87 0.87

Posterior Mode Accuracy 0.89 0.79 0.86 0.89 0.91 0.91 0.92 0.92 0.92 0.93

Table 4: Observed engagement rate and the total number of patients at day 200, stratified

by A0 and CD4 measurement status.

CD4≤350 CD4>350 or missing All

A0 = 0 0.899 (33042) 0.907 (31138) 0.903 (64180)

A0 = 1 0.818 (4317) 0.732 (8159) 0.762 (12476)

Figures

Figure 1: Multinomial state transitions in the progression of patients’ engagement in care

through the HIV care cascade.
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Figure 2: Number of subjects in each state over time. At baseline, 92,050 unique individual

records are available from AMPATH after data processing. By definition, all individuals

are engaged in care at baseline.
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Figure 3: Accuracy plots for validating models of the time-varying confounders and multinomial outcome

on validation data of 26,740 patients, across time intervals t = 1, . . . , 10. For the first row, the left and

right plots correspond to Lt (continuous) and Rt (binary), respectively. For Lt at the tth interval, blue dot

represents observed response mean 1
N ′

t

∑
i∈It Lit, red line is the mean and grey band is the 95% confidence

interval of posterior predictive samples { 1
N ′

t

∑
i∈It L̂ijt; j = 1, . . . , Npost}, where It is the subgroup of test

set subjects who were at risk for an event at time t, N ′t is the sample size of It, and L̂ijt is the jth posterior

prediction of the continuous confounder Lt for the ith subject; similarly for Rt. The second and third rows

correspond to the outcome being disengaged, engaged, transferred out, and died. For disengagement, the

blue dot represents the observed marginal probability 1
N ′

t

∑
i∈It 1{Sit = Diseng}, red line is the mean and

grey band as the 95% confidence interval of posterior predictive samples { 1
N ′

t

∑
i∈It 1{Ŝijt = Diseng}; j =

1, . . . , Npost}; likely for engagement, transfer-out, and death.
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Figure 4: Predicted marginal state probabilities for an out-of-sample 30,000 individuals

engaged in AMPATH-supported HIV care at baseline, under the never treat, treat when

CD4 drops below 350 cells/mm3, and treat immediately policies (in the order of display,

left to right, up to bottom).
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Figure 5: Counterfactual transition probabilities for an 10,000 individuals engaged in

AMPATH-supported HIV care at baseline, under the never treat, treat when CD4 drops

below 350 cells/mm3, and treat immediately regimes (in the order of display, up to bottom).
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Figure 7: Difference in percentage of engagement statuses between treat immediately and

the treat when CD4 drops below 350 cells/mm3, calculated based on counterfactual trajec-

tories for 10,000 individuals engaged in AMPATH-supported HIV care at baseline.
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